Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot

Ross Leon, Chih Heng Yang, Jason Hwang, Julien Camirand Lemyre, Tuomo Tanttu, Wister Huang, Kok Wai Chan, Kuan Tan, Fay Hudson, Kohei Itoh, Andrea Morello, Arne Laucht, Michel Pioro-Ladriere, Andre Saraiva, Andrew S. Dzurak

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

30 Sitaatiot (Scopus)
39 Lataukset (Pure)


Once the periodic properties of elements were unveiled, chemical behaviour could be understood in terms of the valence of atoms. Ideally, this rationale would extend to quantum dots, and quantum computation could be performed by merely controlling the outer-shell electrons of dot-based qubits. Imperfections in semiconductor materials disrupt this analogy, so real devices seldom display a systematic many-electron arrangement. We demonstrate here an electrostatically confined quantum dot that reveals a well defined shell structure. We observe four shells (31 electrons) with multiplicities given by spin and valley degrees of freedom. Various fillings containing a single valence electron—namely 1, 5, 13 and 25 electrons—are found to be potential qubits. An integrated micromagnet allows us to perform electrically-driven spin resonance (EDSR), leading to faster Rabi rotations and higher fidelity single qubit gates at higher shell states. We investigate the impact of orbital excitations on single qubits as a function of the dot deformation and exploit it for faster qubit control.
JulkaisuNature Communications
DOI - pysyväislinkit
TilaJulkaistu - 11 helmik. 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu


Sukella tutkimusaiheisiin 'Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä