TY - JOUR
T1 - Co-Primary Spectrum Sharing for Inter-Operator Device-to-Device Communication
AU - Cho, Byungjin
AU - Koufos, Konstantinos
AU - Jäntti, Riku
AU - Kim, Seong Lyun
PY - 2017/1/1
Y1 - 2017/1/1
N2 - The business potential of device-to-device (D2D) communication including public safety and vehicular communications will be realized only if direct communication between devices subscribed to different mobile operators (OPs) is supported. One possible way to implement inter-operator D2D communication may use the licensed spectrum of the OPs, i.e., OPs agree to share spectrum in a co-primary manner, and inter-operator D2D communication is allocated over spectral resources contributed from both parties. In this paper, we consider a spectrum sharing scenario, where a number of OPs construct a spectrum pool dedicated to support inter-operator D2D communication. OPs negotiate in the form of a non-cooperative game about how much spectrum each OP contributes to the spectrum pool. OPs submit proposals to each other in parallel until a consensus is reached. When every OP has a concave utility function on the box-constrained region, we identify the conditions guaranteeing the existence of a unique equilibrium point. We show that the iterative algorithm based on the OP's best response might not converge to the equilibrium point due to myopically overreacting to the response of the other OPs, while the Jacobi-play strategy update algorithm can converge with an appropriate selection of update parameter. Using the Jacobi-play update algorithm, we illustrate that asymmetric OPs contribute an unequal amount of resources to the spectrum pool; however, all participating OPs may experience significant performance gains compared with the scheme without spectrum sharing.
AB - The business potential of device-to-device (D2D) communication including public safety and vehicular communications will be realized only if direct communication between devices subscribed to different mobile operators (OPs) is supported. One possible way to implement inter-operator D2D communication may use the licensed spectrum of the OPs, i.e., OPs agree to share spectrum in a co-primary manner, and inter-operator D2D communication is allocated over spectral resources contributed from both parties. In this paper, we consider a spectrum sharing scenario, where a number of OPs construct a spectrum pool dedicated to support inter-operator D2D communication. OPs negotiate in the form of a non-cooperative game about how much spectrum each OP contributes to the spectrum pool. OPs submit proposals to each other in parallel until a consensus is reached. When every OP has a concave utility function on the box-constrained region, we identify the conditions guaranteeing the existence of a unique equilibrium point. We show that the iterative algorithm based on the OP's best response might not converge to the equilibrium point due to myopically overreacting to the response of the other OPs, while the Jacobi-play strategy update algorithm can converge with an appropriate selection of update parameter. Using the Jacobi-play update algorithm, we illustrate that asymmetric OPs contribute an unequal amount of resources to the spectrum pool; however, all participating OPs may experience significant performance gains compared with the scheme without spectrum sharing.
KW - Co-primary spectrum sharing
KW - inter-operator D2D
KW - Non-cooperative game
KW - spectrum pooling
UR - http://www.scopus.com/inward/record.url?scp=85010006284&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2016.2633038
DO - 10.1109/JSAC.2016.2633038
M3 - Article
AN - SCOPUS:85010006284
VL - 35
SP - 91
EP - 105
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
SN - 0733-8716
IS - 1
M1 - 7756392
ER -