Abstrakti
The variety of electromagnetic impedance boundaries is wide since the impedance boundary condition can have a two-dimensional matrix nature. In this article, a particular class of impedance boundary conditions is treated: a boundary condition that produces the so-called co-circular polarization reflector (CCPR). The analysis focuses on the possibilities of manipulating the polarization of the electromagnetic wave reflected from the CCPR surface as well as the so-called matched waves associated with it. The characteristics of CCPR and its special cases (perfectly anisotropic boundary (PAB) and soft-and-hard surface (SHS)) are compared against more classical lossless boundaries: perfect electric, perfect magnetic, and perfect electromagnetic conductors (PEC, PMC, and PEMC).
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 641 |
Sivumäärä | 11 |
Julkaisu | Mathematics |
Vuosikerta | 10 |
Numero | 4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 helmik. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |