Co-Circular Polarization Reflector Revisited: Reflection Properties, Polarization Transformations, and Matched Waves

Ari Sihvola*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

23 Lataukset (Pure)

Abstrakti

The variety of electromagnetic impedance boundaries is wide since the impedance boundary condition can have a two-dimensional matrix nature. In this article, a particular class of impedance boundary conditions is treated: a boundary condition that produces the so-called co-circular polarization reflector (CCPR). The analysis focuses on the possibilities of manipulating the polarization of the electromagnetic wave reflected from the CCPR surface as well as the so-called matched waves associated with it. The characteristics of CCPR and its special cases (perfectly anisotropic boundary (PAB) and soft-and-hard surface (SHS)) are compared against more classical lossless boundaries: perfect electric, perfect magnetic, and perfect electromagnetic conductors (PEC, PMC, and PEMC).

AlkuperäiskieliEnglanti
Artikkeli641
Sivumäärä11
JulkaisuMathematics
Vuosikerta10
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 1 helmik. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Co-Circular Polarization Reflector Revisited: Reflection Properties, Polarization Transformations, and Matched Waves'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä