Cluster-based multidimensional scaling embedding tool for data visualization

Patricia Hernandez Leon*, Miguel A. Caro

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
42 Lataukset (Pure)

Abstrakti

We present a new technique for visualizing high-dimensional data called cluster MDS (cl-MDS), which addresses a common difficulty of dimensionality reduction methods: preserving both local and global structures of the original sample in a single 2-dimensional visualization. Its algorithm combines the well-known multidimensional scaling (MDS) tool with the k-medoids data clustering technique, and enables hierarchical embedding, sparsification and estimation of 2-dimensional coordinates for additional points. While cl-MDS is a generally applicable tool, we also include specific recipes for atomic structure applications. We apply this method to non-linear data of increasing complexity where different layers of locality are relevant, showing a clear improvement in their retrieval and visualization quality.

AlkuperäiskieliEnglanti
Artikkeli066004
Sivumäärä20
JulkaisuPhysica Scripta
Vuosikerta99
Numero6
DOI - pysyväislinkit
TilaJulkaistu - 9 toukok. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Cluster-based multidimensional scaling embedding tool for data visualization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä