Classification of tree species based on hyperspectral reflectance images of stem bark

Jussi Juola*, Aarne Hovi, Miina Rautiainen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

4 Sitaatiot (Scopus)
20 Lataukset (Pure)

Abstrakti

Automatization of tree species identification in the field is crucial in improving forest-based bioeconomy, supporting forest management, and facilitating in situ data collection for remote sensing applications. However, tree species recognition has never been addressed with hyperspectral reflectance images of stem bark before. We investigated how stem bark texture differs between tree species using a hyperspectral camera set-up and gray level co-occurrence matrices and assessed the potential of using reflectance spectra and texture features of stem bark to identify tree species. The analyses were based on 200 hyperspectral reflectance data cubes (415–925 nm) representing ten tree species. There were subtle interspecific differences in bark texture. Using average spectral features in linear discriminant analysis classifier resulted in classification accuracy of 92–96.5%. Using spectral and texture features together resulted in accuracy of 93–97.5%. With a convolutional neural network, we obtained an accuracy of 94%. Our study showed that the spectral features of stem bark were robust for classifying tree species, but importantly, bark texture is beneficial when combined with spectral data. Our results suggest that in situ imaging spectroscopy is a promising sensor technology for developing accurate tree species identification applications to support remote sensing.

AlkuperäiskieliEnglanti
Artikkeli2161420
Sivumäärä15
JulkaisuEuropean Journal of Remote Sensing
Vuosikerta56
Numero1
Varhainen verkossa julkaisun päivämäärä28 jouluk. 2022
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Classification of tree species based on hyperspectral reflectance images of stem bark'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä