Class-Agnostic Object Detection with Multi-modal Transformer

Muhammad Maaz*, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, Ming Hsuan Yang

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and novel objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. For the first time in literature, we demonstrate that Multi-modal Vision Transformers (MViT) trained with aligned image-text pairs can effectively bridge this gap. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on the observation that existing MViTs do not include multi-scale feature processing and usually require longer training schedules, we develop an efficient MViT architecture using multi-scale deformable attention and late vision-language fusion. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs can adaptively generate proposals given a specific language query and thus offer enhanced interactability. Code: https://git.io/J1HPY.

AlkuperäiskieliEnglanti
OtsikkoComputer Vision – ECCV 2022 - 17th European Conference, Proceedings
ToimittajatShai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner
KustantajaSPRINGER
Sivut512-531
Sivumäärä20
ISBN (painettu)9783031200793
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaEuropean Conference on Computer Vision - Tel Aviv, Israel
Kesto: 23 lokak. 202227 lokak. 2022
Konferenssinumero: 17
https://eccv2022.ecva.net

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta13670 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceEuropean Conference on Computer Vision
LyhennettäECCV
Maa/AlueIsrael
KaupunkiTel Aviv
Ajanjakso23/10/202227/10/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Class-Agnostic Object Detection with Multi-modal Transformer'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä