Abstrakti
Many techniques have been proposed in recent years that attempt to explain results of image classifiers, notably for the case when the classifier is a deep neural network. This paper presents an implementation of the Contextual Importance and Utility method for explaining image classifications. It is an R package that can be used with the most usual image classification models. The paper shows results for typical benchmark images, as well as for a medical data set of gastro-enterological images. For comparison, results produced by the LIME method are included. Results show that CIU produces similar or better results than LIME with significantly shorter calculation times. However, the main purpose of this paper is to bring the existence of this package to general knowledge and use, rather than comparing with other explanation methods.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Explainable and Transparent AI and Multi-Agent Systems - 3rd International Workshop, EXTRAAMAS 2021, Revised Selected Papers |
Toimittajat | Davide Calvaresi, Amro Najjar, Michael Winikoff, Kary Främling |
Sivut | 55-62 |
Sivumäärä | 8 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2021 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Workshop on Explainable, Transparent AI and Multi-Agent Systems - Virtual, Online Kesto: 3 toukok. 2021 → 7 toukok. 2021 Konferenssinumero: 3 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Kustantaja | Springer |
Vuosikerta | 12688 LNAI |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Workshop
Workshop | International Workshop on Explainable, Transparent AI and Multi-Agent Systems |
---|---|
Lyhennettä | EXTRAAMAS |
Kaupunki | Virtual, Online |
Ajanjakso | 03/05/2021 → 07/05/2021 |