Projekteja vuodessa
Abstrakti
Family history is considered a risk factor for many diseases because it implicitly captures shared genetic, environmental and lifestyle factors. Finland’s nationwide electronic health record (EHR) system spanning multiple generations presents new opportunities for studying a connected network of medical histories for entire families. In this work we present a graph-based deep learning approach for learning explainable, supervised representations of how each family member’s longitudinal medical history influences a patient’s disease risk. We demonstrate that this approach is beneficial for predicting 10-year disease onset for 5 complex disease phenotypes, compared to clinically-inspired and deep learning baselines for Finland’s nationwide EHR system comprising 7 million individuals with up to third-degree relatives. Through the use of graph explainability techniques, we illustrate that a graph-based approach enables more personalized modeling of family information and disease risk by identifying important relatives and features for prediction.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 8th Machine Learning for Healthcare Conference |
Toimittajat | Kaivalya Deshpande, Madalina Fiterau, Shalmali Joshi, Zachary Lipton, Rajesh Ranganath, Iñigo Urteaga, Serene Yeung |
Kustantaja | JMLR |
Sivut | 824-845 |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Machine Learning for Healthcare - New York, Yhdysvallat Kesto: 11 elok. 2023 → 12 elok. 2023 https://www.mlforhc.org/2023-agenda |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Vuosikerta | 219 |
ISSN (painettu) | 2640-3498 |
Conference
Conference | Machine Learning for Healthcare |
---|---|
Lyhennettä | MLHC |
Maa/Alue | Yhdysvallat |
Kaupunki | New York |
Ajanjakso | 11/08/2023 → 12/08/2023 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'Characterizing personalized effects of family information on disease risk using graph representation learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
INTERVENE: International consortium for integrative genomics prediction
Kaski, S. (Vastuullinen tutkija)
01/01/2021 → 31/12/2025
Projekti: EU: Framework programmes funding