Abstrakti

Family history is considered a risk factor for many diseases because it implicitly captures shared genetic, environmental and lifestyle factors. Finland’s nationwide electronic health record (EHR) system spanning multiple generations presents new opportunities for studying a connected network of medical histories for entire families. In this work we present a graph-based deep learning approach for learning explainable, supervised representations of how each family member’s longitudinal medical history influences a patient’s disease risk. We demonstrate that this approach is beneficial for predicting 10-year disease onset for 5 complex disease phenotypes, compared to clinically-inspired and deep learning baselines for Finland’s nationwide EHR system comprising 7 million individuals with up to third-degree relatives. Through the use of graph explainability techniques, we illustrate that a graph-based approach enables more personalized modeling of family information and disease risk by identifying important relatives and features for prediction.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 8th Machine Learning for Healthcare Conference
ToimittajatKaivalya Deshpande, Madalina Fiterau, Shalmali Joshi, Zachary Lipton, Rajesh Ranganath, Iñigo Urteaga, Serene Yeung
KustantajaJMLR
Sivut824-845
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaMachine Learning for Healthcare - New York, Yhdysvallat
Kesto: 11 elok. 202312 elok. 2023
https://www.mlforhc.org/2023-agenda

Julkaisusarja

NimiProceedings of Machine Learning Research
Vuosikerta219
ISSN (painettu)2640-3498

Conference

ConferenceMachine Learning for Healthcare
LyhennettäMLHC
Maa/AlueYhdysvallat
KaupunkiNew York
Ajanjakso11/08/202312/08/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Characterizing personalized effects of family information on disease risk using graph representation learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä