Projekteja vuodessa
Abstrakti
Emerging visual-based driving assistance systems involve time-critical and data-intensive computational tasks, such as real-time object recognition and scene understanding. Due to the constraints on space and power capacity, it is not feasible to install extra computing devices on all the vehicles. To solve this problem, different scenarios of vehicular fog computing have been proposed, where computational tasks generated by vehicles can be sent to and processed at fog nodes located for example at 5G cell towers or moving buses. In this paper, we propose Chameleon, a novel solution for task offloading for visual-based assisted driving. Chameleon takes into account the spatiotemporal variation in service demand and supply, and provides latency and resolution aware task offloading strategies based on partially observable Markov decision process (POMDP). To evaluate the effectiveness of Chameleon, we simulate the availability of vehicular fog nodes at different times of day based on the bus trajectories collected in Helsinki, and use the real-world performance measurements of visual data transmission and processing. Compared with adaptive and random task offloading strategies, the POMDP-based offloading strategies provided by Chameleon shortens the average service latency of task offloading by up to 65% while increasing the average resolution level of processed images by up to 83%.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 8768075 |
Sivut | 9038-9048 |
Sivumäärä | 11 |
Julkaisu | IEEE Transactions on Vehicular Technology |
Vuosikerta | 68 |
Numero | 9 |
DOI - pysyväislinkit | |
Tila | Julkaistu - syysk. 2019 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki
Sukella tutkimusaiheisiin 'Chameleon: Latency and Resolution Aware Task Offloading for Visual-Based Assisted Driving'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 5 Päättynyt
-
DataFog: Datalähtöinen alusta kapasiteetin ja resurssien hallintaan ajoneuvojen sumulaskennassa
Xiao, Y., Akgul, Ö., Zhanabatyrova, A., Zhu, C., Cho, B., Mao, W., Noreikis, M. & Li, X.
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
5G-MOBIX: 5G for cooperative & connected automated MOBIility on X-border corridors
Xiao, Y., Akgul, Ö., Zhanabatyrova, A., El Marai, O., Li, X. & Pastor Figueroa, G.
01/11/2018 → 30/09/2022
Projekti: EU: Framework programmes funding
-
PriMO-5G: Virtual Presence in Moving Objects through 5G
Jäntti, R., Mutafungwa, E., Ruttik, K., Sheikh, M., Menta, E., Malm, N., Meles, M., Saba, N. & Lassila, P.
01/07/2018 → 30/06/2021
Projekti: EU: Framework programmes funding
Lehtileikkeet
-
Task Allocation and Resource Scheduling in Vehicular Fog Computing
04/12/2020
1 kohde/ Medianäkyvyys
Lehdistö/media: Esiintyminen mediassa