Chameleon: Latency and Resolution Aware Task Offloading for Visual-Based Assisted Driving

Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao*, Antti Yla-Jaaski, Yusheng Ji

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
35 Lataukset (Pure)

Abstrakti

Emerging visual-based driving assistance systems involve time-critical and data-intensive computational tasks, such as real-time object recognition and scene understanding. Due to the constraints on space and power capacity, it is not feasible to install extra computing devices on all the vehicles. To solve this problem, different scenarios of vehicular fog computing have been proposed, where computational tasks generated by vehicles can be sent to and processed at fog nodes located for example at 5G cell towers or moving buses. In this paper, we propose Chameleon, a novel solution for task offloading for visual-based assisted driving. Chameleon takes into account the spatiotemporal variation in service demand and supply, and provides latency and resolution aware task offloading strategies based on partially observable Markov decision process (POMDP). To evaluate the effectiveness of Chameleon, we simulate the availability of vehicular fog nodes at different times of day based on the bus trajectories collected in Helsinki, and use the real-world performance measurements of visual data transmission and processing. Compared with adaptive and random task offloading strategies, the POMDP-based offloading strategies provided by Chameleon shortens the average service latency of task offloading by up to 65% while increasing the average resolution level of processed images by up to 83%.

AlkuperäiskieliEnglanti
Artikkeli8768075
Sivut9038-9048
Sivumäärä11
JulkaisuIEEE Transactions on Vehicular Technology
Vuosikerta68
Numero9
DOI - pysyväislinkit
TilaJulkaistu - syyskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Projektit

DataFog: Datalähtöinen alusta kapasiteetin ja resurssien hallintaan ajoneuvojen sumulaskennassa

Xiao, Y., Noreikis, M., Zhu, C., Mao, W., Akgul, Ö., Zhanabatyrova, A. & Li, X.

01/01/201931/12/2022

Projekti: Academy of Finland: Other research funding

5G-MOBIX: 5G for cooperative & connected automated MOBIility on X-border corridors

Xiao, Y., Zhanabatyrova, A., Pastor Figueroa, G., Li, X., Lundström, P. & Akgul, Ö.

01/11/201831/12/2022

Projekti: EU: Framework programmes funding

PriMO-5G: Virtual Presence in Moving Objects through 5G

Mutafungwa, E., Jäntti, R., Menta, E., Lassila, P. & Sheikh, M.

01/07/201831/12/2021

Projekti: EU: Framework programmes funding

Siteeraa tätä