Cartesian Lattice Counting by the Vertical 2-sum

Jukka Kohonen*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

A vertical 2-sum of a two-coatom lattice L and a two-atom lattice U is obtained by removing the top of L and the bottom of U, and identifying the coatoms of L with the atoms of U. This operation creates one or two nonisomorphic lattices depending on the symmetry case. Here the symmetry cases are analyzed, and a recurrence relation is presented that expresses the number of nonisomorphic vertical 2-sums in some desired family of graded lattices. Nonisomorphic, vertically indecomposable modular and distributive lattices are counted and classified up to 35 and 60 elements respectively. Asymptotically their numbers are shown to be at least omega(2.3122(n)) and omega(1.7250(n)), where n is the number of elements. The number of semimodular lattices is shown to grow faster than any exponential in n.

AlkuperäiskieliEnglanti
Sivumäärä29
JulkaisuORDER: A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
DOI - pysyväislinkit
TilaSähköinen julkaisu (e-pub) ennen painettua julkistusta - 25 toukokuuta 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Siteeraa tätä