Can You Trust Your Pose? Confidence Estimation in Visual Localization

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

1 Sitaatiot (Scopus)


Camera pose estimation in large-scale environments is still an open question and, despite recent promising results, it may still fail in some situations. The research so far has focused on improving subcomponents of estimation pipelines, to achieve more accurate poses. However, there is no guarantee for the result to be correct, even though the correctness of pose estimation is critically important in several visual localization applications, such as in autonomous navigation. In this paper we bring to attention a novel research question, pose confidence estimation, where we aim at quantifying how reliable the visually estimated pose is. We develop a novel confidence measure to fulfill this task and show that it can be flexibly applied to different datasets, indoor or outdoor, and for various visual localization pipelines. We also show that the proposed techniques can be used to accomplish a secondary goal: improving the accuracy of existing pose estimation pipelines. Finally, the proposed approach is computationally light-weight and adds only a negligible increase to the computational effort of pose estimation.
OtsikkoProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
ISBN (elektroninen)9781728188089
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on Pattern Recognition - Virtual, Online, Milan, Italia
Kesto: 10 tammik. 202115 tammik. 2021
Konferenssinumero: 25


ConferenceInternational Conference on Pattern Recognition


Sukella tutkimusaiheisiin 'Can You Trust Your Pose? Confidence Estimation in Visual Localization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä