Bringing PDEs to JAX with forward and reverse modes automatic differentiation

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaKonferenssiesitysScientific

Abstrakti

Partial differential equations (PDEs) are used to describe a variety of physical phenomena. Often these equations do not have analytical solutions and numerical approximations are used instead. One of the common methods to solve PDEs is the finite element method. Computing derivative information of the solution with respect to the input parameters is important in many tasks in scientific computing. We extend JAX automatic differentiation library with an interface to Firedrake finite element library. High-level symbolic representation of PDEs allows bypassing differentiating through low-level possibly many iterations of the underlying nonlinear solvers. Differentiating through Firedrake solvers is done using tangent-linear and adjoint equations.
This enables the efficient composition of finite element solvers with arbitrary differentiable programs.
AlkuperäiskieliEnglanti
TilaJulkaisematon - 2020
OKM-julkaisutyyppiEi sovellu
TapahtumaInternational Conference on Learning Representations - Addis Ababa, Etiopia
Kesto: 26 huhtik. 202030 huhtik. 2020
Konferenssinumero: 8

Conference

ConferenceInternational Conference on Learning Representations
LyhennettäICLR
Maa/AlueEtiopia
KaupunkiAddis Ababa
Ajanjakso26/04/202030/04/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Bringing PDEs to JAX with forward and reverse modes automatic differentiation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä