Abstrakti
We consider a broad class of Kalman-Bucy filter extensions for continuous-time systems with non-linear dynamics and linear measurements. This class contains, for example, the extended Kalman-Bucy filter, the unscented Kalman-Bucy filter, and most other numerical integration filters. We provide simple upper and lower bounds for the trace of the error covariance, as solved from a matrix Riccati equation, for this class of filters. The upper bounds require assuming that the state is fully observed. The bounds are applied to a simple simultaneous localisation and mapping problem and numerically demonstrated on a two-dimensional trigonometric toy model.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of 57th IEEE Conference on Decision and Control, CDC 2018 |
Kustantaja | IEEE |
Sivut | 7176-7181 |
Sivumäärä | 6 |
Vuosikerta | 2018-December |
ISBN (elektroninen) | 9781538613955 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 18 tammik. 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE CONFERENCE ON DECISION AND CONTROL - Miami, Yhdysvallat Kesto: 17 jouluk. 2018 → 19 jouluk. 2018 Konferenssinumero: 57 |
Julkaisusarja
Nimi | Proceedings of the IEEE Conference on Decision & Control |
---|---|
ISSN (painettu) | 0743-1546 |
Conference
Conference | IEEE CONFERENCE ON DECISION AND CONTROL |
---|---|
Lyhennettä | CDC |
Maa/Alue | Yhdysvallat |
Kaupunki | Miami |
Ajanjakso | 17/12/2018 → 19/12/2018 |