Abstrakti
This paper presents a recurrent neural network architecture, guided by the bottom-up attention, for the recognition task. The proposed architecture processes an input image as a sequence of selectively chosen patches. The patches are chosen from the salient regions of the input image. Using human driven saliency maps from gaze, the benefit of such a selection process is first shown. Next, the performance of computational models of bottom-up attention are assessed as alternative to human attention.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings |
Kustantaja | IEEE |
Sivut | 3004-3008 |
Sivumäärä | 5 |
ISBN (elektroninen) | 9781479970612 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Image Processing - Athens, Kreikka Kesto: 7 lokak. 2018 → 10 lokak. 2018 Konferenssinumero: 25 |
Conference
Conference | IEEE International Conference on Image Processing |
---|---|
Lyhennettä | ICIP |
Maa/Alue | Kreikka |
Kaupunki | Athens |
Ajanjakso | 07/10/2018 → 10/10/2018 |