Boosted Curriculum Reinforcement Learning

Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsProfessional

Abstrakti

Curriculum value-based reinforcement learning (RL) solves a complex target task by reusing action-values across a tailored sequence of related tasks of increasing difficulty. However, finding an exact way of reusing action-values in this setting is still a poorly understood problem. In this paper, we introduce the concept of boosting to curriculum value-based RL, by approximating the action-value function as a sum of residuals trained on each task. This approach, which we refer to as boosted curriculum reinforcement learning (BCRL), has the benefit of naturally increasing the representativeness of the functional space by adding a new residual each time a new task is presented. This procedure allows reusing previous action-values while promoting expressiveness of the action-value function. We theoretically study BCRL as an approximate value iteration algorithm, discussing advantages over regular curriculum RL in terms of approximation accuracy and convergence to the optimal action-value function. Finally, we provide detailed empirical evidence of the benefits of BCRL in problems requiring curricula for accurate action-value estimation and targeted exploration.
AlkuperäiskieliEnglanti
OtsikkoInternational Conference on Learning Representations
KustantajaOpenReview.net
Sivumäärä22
TilaJulkaistu - 2022
OKM-julkaisutyyppiD3 Artikkeli ammatillisessa konferenssijulkaisussa
TapahtumaInternational Conference on Learning Representations - Virtual, Online
Kesto: 25 huhtik. 202229 huhtik. 2022
Konferenssinumero: 10

Conference

ConferenceInternational Conference on Learning Representations
LyhennettäICLR
KaupunkiVirtual, Online
Ajanjakso25/04/202229/04/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Boosted Curriculum Reinforcement Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä