Block particle filters for state estimation of stochastic reaction-diffusion systems

José Augusto F. Magalhães*, Otacilio B. L. Neto*, Francesco Corona*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

29 Lataukset (Pure)

Abstrakti

In this work, we consider a differential description of the evolution of the state of a reaction-diffusion system under environmental fluctuations. We are interested in estimating the state of the system when only partial observations are available. To describe how observations and states are related, we combine multiplicative noise-driven dynamics with an observation model. More specifically, we ensure that the observations are subjected to error in the form of additive noise. We focus on the state estimation of a Belousov-Zhabotinskii chemical reaction. We simulate a reaction conducted in a quasi-two-dimensional physical domain, such as on the surface of a Petri dish. We aim at reconstructing the emerging chemical patterns based on noisy spectral observations. For this task, we consider a finite difference representation on the spatial domain, where nodes are chosen according to observation sites. We approximate the solution to this state estimation problem with the Block particle filter, a sequential Monte Carlo method capable of addressing the associated high-dimensionality of this state-space representation.
AlkuperäiskieliEnglanti
Sivut10270-10275
Sivumäärä6
JulkaisuIFAC-PapersOnLine
Vuosikerta56
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 22 marrask. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIFAC World Congress - Yokohama, Japani
Kesto: 9 heinäk. 202314 heinäk. 2023
Konferenssinumero: 22

Sormenjälki

Sukella tutkimusaiheisiin 'Block particle filters for state estimation of stochastic reaction-diffusion systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä