Blind source separation of graph signals

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

10 Sitaatiot (Scopus)

Abstrakti

With a change of signal notion to graph signal, new means of performing blind source separation (BSS) appear. Particularly, existing independent component analysis (ICA) methods exploit the non-Gaussianity of the signals or other types of prior information. For graph signals, such prior information is present in a graph of dependencies in the signals. We propose BSS of graph signals which uses the prior information presented by the signal graph together with non-Gaussianity. We derive the identifiability conditions for the proposed method and compare them to the conditions when only graph or non-Gaussianity approach is used. In simulation studies, we verify that the new method can separate a broader range of graph signals and show that it is also more efficient when both approaches are useful.

AlkuperäiskieliEnglanti
Otsikko2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings
KustantajaIEEE
Sivut5645-5649
Sivumäärä5
ISBN (elektroninen)9781509066315
DOI - pysyväislinkit
TilaJulkaistu - toukok. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Virtual conference, Barcelona, Espanja
Kesto: 4 toukok. 20208 toukok. 2020
Konferenssinumero: 45

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso04/05/202008/05/2020
MuuVirtual conference

Sormenjälki

Sukella tutkimusaiheisiin 'Blind source separation of graph signals'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä