Bioinspired multisensory neural network with crossmodal integration and recognition

Hongwei Tan*, Yifan Zhou, Quanzheng Tao, Johanna Rosen, Sebastiaan van Dijken

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

47 Sitaatiot (Scopus)
51 Lataukset (Pure)

Abstrakti

The integration and interaction of vision, touch, hearing, smell, and taste in the human multisensory neural network facilitate high-level cognitive functionalities, such as crossmodal integration, recognition, and imagination for accurate evaluation and comprehensive understanding of the multimodal world. Here, we report a bioinspired multisensory neural network that integrates artificial optic, afferent, auditory, and simulated olfactory and gustatory sensory nerves. With distributed multiple sensors and biomimetic hierarchical architectures, our system can not only sense, process, and memorize multimodal information, but also fuse multisensory data at hardware and software level. Using crossmodal learning, the system is capable of crossmodally recognizing and imagining multimodal information, such as visualizing alphabet letters upon handwritten input, recognizing multimodal visual/smell/taste information or imagining a never-seen picture when hearing its description. Our multisensory neural network provides a promising approach towards robotic sensing and perception.

AlkuperäiskieliEnglanti
Artikkeli1120
Sivumäärä9
JulkaisuNature Communications
Vuosikerta12
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 18 helmik. 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Bioinspired multisensory neural network with crossmodal integration and recognition'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä