Biobased aerogels with different surface charge as electrolyte carrier membranes in quantum dot-sensitized solar cell

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • University of Nevada, Reno

Kuvaus

Biobased aerogels were used as environmentally friendly replacement for synthetic polymers as electrolyte carrier membranes in quantum dot-sensitized solar cell (QDSC). Integration of polymeric components in solar cells has received increased attention for sustainable energy generation. In this context, biobased aerogels were fabricated to apply as freestanding, porous and eco-friendly electrolyte holding membranes in QDSC. Bacterial cellulose (BC), cellulose nanofibers (CNF), chitin nanofibers (ChNF) and TEMPO-oxidized CNF (TOCNF) were selected because of their fibrilar structures and water-holding capability to investigate their inherent differences in terms of surface groups and electrostatic charge on the electrolyte redox reaction and the photocell function. BC, CNF, ChNF and TOCNF were selected due to different surface functional groups (hydroxyl, N-acetylglucosamine and carboxyl units) and fibrilar structures that can form highly interconnected and robust network. These aerogels enabled easy handling, effective electrolyte filling and efficient redox reactions, while keeping the solar cell performance on par to that of traditional reference cells without membranes. The aerogel membranes maintained the photocell performance since they took only a very small space of the electrolyte volume, which allowed efficient charge transfer. The results indicated that aerogels did not interfere with the cell operation, as confirmed by quartz crystal microgravimetry with bio-interphases in contact with the polysulfide-based electrolyte. The electrochemical measurements also suggested that the respective functional groups (hydroxyl, N-acetylglucosamine and carboxyl units) did not interfere with the redox reaction of the polysulfide electrolyte.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut3363-3375
Sivumäärä13
JulkaisuCellulose
Vuosikerta25
Numero6
TilaJulkaistu - kesäkuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 19314059