Projekteja vuodessa
Abstrakti
Constant rotor system monitoring enables timely control and maintenance actions that decrease the likelihood of severe malfunctions and end product quality deficits. Soft sensors represent a promising branch of solutions enhancing rotor system monitoring. A soft sensor can substitute a malfunctioning physical sensor and provide estimates of a quantity that is difficult to measure. This research demonstrates a soft sensor based on bidirectional long short-term memory (LSTM), and a training procedure for rotor system monitoring at high sampling frequency and varied operating conditions. This study adopts a large rotor and bearing vibration dataset. The soft sensor accurately estimates lateral displacement trajectories of the rotor from the bearing reaction forces over a large range of constant rotating speeds and constant support stiffnesses. The mean absolute error (MAE) of the LSTM-based soft sensor is 0.0063 mm over the test trajectories in the complete operating condition space. The soft sensor performance is shown to decrease significantly to a MAE of 0.0442 mm, if the training dataset is limited in the rotating speed range.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 9654210 |
Sivut | 167556-167569 |
Sivumäärä | 14 |
Julkaisu | IEEE Access |
Vuosikerta | 9 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 16 jouluk. 2021 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Bidirectional LSTM-Based Soft Sensor for Rotor Displacement Trajectory Estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
AI-ROT/Viitala: Artificial Intelligence Optimization for Production Lines Deploying Rotating Machinery
Viitala, R. (Vastuullinen tutkija)
01/01/2021 → 31/12/2023
Projekti: Academy of Finland: Other research funding
-
Reboot IoT Factory Phase II
Juhanko, J. (Vastuullinen tutkija)
01/11/2019 → 31/08/2021
Projekti: Business Finland: Other research funding