Projekteja vuodessa
Abstrakti
Imitation learning from human motion capture (MoCap) data provides a promising way to train humanoid robots. However, due to differences in morphology, such as varying degrees of joint freedom and force limits, exact replication of human behaviors may not be feasible for humanoid robots. Consequently, incorporating physically infeasible MoCap data in training datasets can adversely affect the performance of the robot policy. To address this issue, we propose a bi-level optimization-based imitation learning framework that alternates between optimizing both the robot policy and the target MoCap data. Specifically, we first develop a generative latent dynamics model using a novel self-consistent auto-encoder, which learns sparse and structured motion representations while capturing desired motion patterns in the dataset. The dynamics model is then utilized to generate reference motions while the latent representation regularizes the bi-level motion imitation process. Simulations conducted with a realistic model of a humanoid robot demonstrate that our method enhances the robot policy by modifying reference motions to be physically consistent.
Alkuperäiskieli | Englanti |
---|---|
Sivumäärä | 19 |
Julkaisu | Proceedings of Machine Learning Research |
Vuosikerta | 270 |
Tila | Julkaistu - 2025 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Robot Learning - Munich, Saksa Kesto: 6 marrask. 2024 → 9 marrask. 2024 https://www.corl.org/ |
Sormenjälki
Sukella tutkimusaiheisiin 'Bi-Level Motion Imitation for Humanoid Robots'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
MARL: Efficient and Principled Multi-Agent Reinforcement Learning
Pajarinen, J. (Vastuullinen tutkija)
01/09/2023 → 31/08/2027
Projekti: Academy of Finland: Other research funding
-
Safe: Turvallinen vahvistusoppiminen epästationaarisissa ympäristöissä nopealla sopeutumisella ja häiriöennustuksella
Pajarinen, J. (Vastuullinen tutkija)
01/01/2022 → 31/12/2024
Projekti: Academy of Finland: Other research funding