Bi-Level Motion Imitation for Humanoid Robots

Wenshuai Zhao, Yi Zhao, Joni Pajarinen, Michael Muehlebach

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

16 Lataukset (Pure)

Abstrakti

Imitation learning from human motion capture (MoCap) data provides a promising way to train humanoid robots. However, due to differences in morphology, such as varying degrees of joint freedom and force limits, exact replication of human behaviors may not be feasible for humanoid robots. Consequently, incorporating physically infeasible MoCap data in training datasets can adversely affect the performance of the robot policy. To address this issue, we propose a bi-level optimization-based imitation learning framework that alternates between optimizing both the robot policy and the target MoCap data. Specifically, we first develop a generative latent dynamics model using a novel self-consistent auto-encoder, which learns sparse and structured motion representations while capturing desired motion patterns in the dataset. The dynamics model is then utilized to generate reference motions while the latent representation regularizes the bi-level motion imitation process. Simulations conducted with a realistic model of a humanoid robot demonstrate that our method enhances the robot policy by modifying reference motions to be physically consistent.
AlkuperäiskieliEnglanti
Sivumäärä19
JulkaisuProceedings of Machine Learning Research
Vuosikerta270
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Robot Learning - Munich, Saksa
Kesto: 6 marrask. 20249 marrask. 2024
https://www.corl.org/

Sormenjälki

Sukella tutkimusaiheisiin 'Bi-Level Motion Imitation for Humanoid Robots'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä