Beyond Top-Grasps Through Scene Completion

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

11 Lataukset (Pure)

Abstrakti

Current end-to-end grasp planning methods propose grasps in the order of (milli)seconds that attain high grasp success rates on a diverse set of objects, but often by constraining the workspace to top-grasps. In this work, we present a method that allows end-to-end top grasp planning methods to generate full six-degree-of-freedom grasps using a single RGB-D view as input. This is achieved by estimating the complete shape of the object to be grasped, then simulating different viewpoints of the object, passing the simulated viewpoints to an end-to-end grasp generation method, and finally executing the overall best grasp. The method was experimentally validated on a Franka Emika Panda by comparing 429 grasps generated by the state-of-the-art Fully Convolutional Grasp Quality CNN, both on simulated and real camera viewpoints. The results show statistically significant improvements in terms of grasp success rate when using simulated viewpoints over real camera viewpoints, especially when the real camera viewpoint is angled.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the IEEE Conference on Robotics and Automation, ICRA 2020
KustantajaIEEE
Sivut545-551
Sivumäärä7
ISBN (elektroninen)978-1-7281-7395-5
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Robotics and Automation - Online
Kesto: 31 toukokuuta 202031 elokuuta 2020

Julkaisusarja

NimiIEEE International Conference on Robotics and Automation
KustantajaIEEE
ISSN (painettu)2152-4092
ISSN (elektroninen)2379-9552

Conference

ConferenceIEEE International Conference on Robotics and Automation
LyhennettäICRA
Ajanjakso31/05/202031/08/2020

Sormenjälki Sukella tutkimusaiheisiin 'Beyond Top-Grasps Through Scene Completion'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä