Abstrakti
We present a novel adaptation technique for search engines to better support information-seeking activities that include both lookup and exploratory tasks. Building on previous findings, we describe (1) a classifier that recognizes task type (lookup vs. exploratory) as a user is searching and (2) a reinforcement learning based search engine that adapts accordingly the balance of exploration/exploitation in ranking the documents. This allows supporting both task types surreptitiously without changing the familiar list-based interface. Search results include more diverse results when users are exploring and more precise results for lookup tasks. Users found more useful results in exploratory tasks when compared to a baseline system, which is specifically tuned for lookup tasks.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 21st International Conference on Intelligent User Interfaces |
Alaotsikko | IUI '16 |
Kustantaja | ACM |
Sivut | 359-369 |
Sivumäärä | 11 |
Vuosikerta | 07-10-March-2016 |
ISBN (painettu) | 9781450341370, 9781450341400 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 7 maalisk. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Intelligent User Interfaces - Sonoma, Yhdysvallat Kesto: 7 maalisk. 2016 → 10 maalisk. 2016 Konferenssinumero: 21 |
Conference
Conference | International Conference on Intelligent User Interfaces |
---|---|
Lyhennettä | IUI |
Maa/Alue | Yhdysvallat |
Kaupunki | Sonoma |
Ajanjakso | 07/03/2016 → 10/03/2016 |