Benchmarking the Sim-to-Real Gap in Cloth Manipulation

David Blanco-Mulero, Oriol Barbany, Gokhan Alcan, Adria Colome, Carme Torras, Ville Kyrki

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

3 Sitaatiot (Scopus)
172 Lataukset (Pure)

Abstrakti

Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the realworld. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic as well as a quasi-static cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at <uri>https://sites.google.com/view/cloth-sim2real-benchmark</uri>.

AlkuperäiskieliEnglanti
Sivut2981-2988
Sivumäärä8
JulkaisuIEEE Robotics and Automation Letters
Vuosikerta9
Numero3
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Benchmarking the Sim-to-Real Gap in Cloth Manipulation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä