Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains

Qiaohao Liang*, Aldair E. Gongora, Zekun Ren, Armi Tiihonen, Zhe Liu, Shijing Sun, James R. Deneault, Daniil Bash, Flore Mekki-Berrada, Saif A. Khan, Kedar Hippalgaonkar, Benji Maruyama, Keith A. Brown, John Fisher, Tonio Buonassisi

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

59 Sitaatiot (Scopus)

Abstrakti

Bayesian optimization (BO) has been leveraged for guiding autonomous and high-throughput experiments in materials science. However, few have evaluated the efficiency of BO across a broad range of experimental materials domains. In this work, we quantify the performance of BO with a collection of surrogate model and acquisition function pairs across five diverse experimental materials systems. By defining acceleration and enhancement metrics for materials optimization objectives, we find that surrogate models such as Gaussian Process (GP) with anisotropic kernels and Random Forest (RF) have comparable performance in BO, and both outperform the commonly used GP with isotropic kernels. GP with anisotropic kernels has demonstrated the most robustness, yet RF is a close alternative and warrants more consideration because it is free from distribution assumptions, has smaller time complexity, and requires less effort in initial hyperparameter selection. We also raise awareness about the benefits of using GP with anisotropic kernels in future materials optimization campaigns.

AlkuperäiskieliEnglanti
Artikkeli188
Julkaisunpj Computational Materials
Vuosikerta7
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 18 marrask. 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Benchmarking the performance of Bayesian optimization across multiple experimental materials science domains'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä