Benchmarking RGB-D Segmentation: Toy Dataset of Complex Crowded Scenes

Aleksi Ikkala, Joni Pajarinen, Ville Kyrki

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

In this paper we present a new RGB-D dataset captured with the Kinect sensor. The dataset is composed of typical children’s toys and contains a total of 449 RGB-D images alongside with their annotated ground truth images. Compared to existing RBG-D object segmentation datasets, the objects in our proposed dataset have more complex shapes and less texture. The images are also crowded and thus highly occluded. Three state-of-the-art segmentation methods are benchmarked using the dataset. These methods attack the problem of object segmentation from different starting points, providing a comprehensive view on the properties of the proposed dataset as well as the state-of-the-art performance. The results are mostly satisfactory but there remains plenty of room for improvement. This novel dataset thus poses the next challenge in the area of RGB-D object segmentation.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
KustantajaSciTePress
Sivut107-116
ISBN (elektroninen)978-989-758-175-5
DOI - pysyväislinkit
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaJoint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Rome, Italia
Kesto: 27 helmik. 201629 helmik. 2016
Konferenssinumero: 11

Conference

ConferenceJoint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
LyhennettäVISIGRAPP
Maa/AlueItalia
KaupunkiRome
Ajanjakso27/02/201629/02/2016

Tutkimusalat

  • benchmarking
  • complex objects
  • dataset
  • object segmentation
  • real world objects
  • RGB-D segmentation

Sormenjälki

Sukella tutkimusaiheisiin 'Benchmarking RGB-D Segmentation: Toy Dataset of Complex Crowded Scenes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä