Beamspace and Frequency Domain ISAC Resource Allocation Using Reinforcement Learning

Petteri Pulkkinen*, Majdoddin Esfandiari*, Visa Koivunen*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

In the emerging 6G systems, joint sensing and communications require efficient spatial and frequency domain waveform design and resource allocation to meet system performance objectives. Traditional structured optimization algorithms often face practical challenges such as non-convexity, high computational demand, lack of adaptability, and significant performance degradation when the assumed model is invalid or dynamic. Reinforcement learning (RL) offers a data-driven alternative that leverages observed data to overcome these deficits. This paper combines RL principles with acquired model awareness of radio environment dynamics, thereby enhancing the learning data efficiency and making the algorithm more interpretable than traditional model-free RL methods. We introduce an RL algorithm based on Thompson sampling for allocating sub carriers and beams in the beamspace domain to achieve desired performance levels in wireless communications and radar sensing tasks. The proposed RL method effectively learns from its experiences and balances sensing and communications functionalities, achieving superior target detection performance and competitive communication rates compared to traditional methods.

AlkuperäiskieliEnglanti
OtsikkoConference Record of the 58th Asilomar Conference on Signals, Systems and Computers, ACSSC 2024
ToimittajatMichael B. Matthews
KustantajaIEEE
Sivut443-449
Sivumäärä7
ISBN (elektroninen)979-8-3503-5405-8
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAsilomar Conference on Signals, Systems and Computers - Pacific Grove, Yhdysvallat
Kesto: 27 lokak. 202430 lokak. 2024

Julkaisusarja

NimiConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (painettu)1058-6393

Conference

ConferenceAsilomar Conference on Signals, Systems and Computers
Maa/AlueYhdysvallat
KaupunkiPacific Grove
Ajanjakso27/10/202430/10/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Beamspace and Frequency Domain ISAC Resource Allocation Using Reinforcement Learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä