Beam-search SIEVE for low-memory speech recognition

Martino Ciaperoni, Athanasios Katsamanis, Aristides Gionis, Panagiotis Karras

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

A capacity to recognize speech offline eliminates privacy concerns and the need for an internet connection. Despite efforts to reduce the memory demands of speech recognition systems, these demands remain formidable and thus popular tools such as Kaldi run best via cloud computing. The key bottleneck arises form the fact that a bedrock of such tools, the Viterbi algorithm, requires memory that grows linearly with utterance length even when contained via beam search. A recent recasting of the Viterbi algorithm, SIEVE, eliminates the path length factor from space complexity, but with a significant practical runtime overhead. In this paper, we develop a variant of SIEVE that lessens this runtime overhead via beam search, retains the decoding quality of standard beam search, and waives its linearly growing memory bottleneck. This space-complexity reduction is orthogonal to decoding quality and complementary to memory savings in model representation and training.

AlkuperäiskieliEnglanti
OtsikkoInterspeech 2024
KustantajaInternational Society for Computers and Their Applications (ISCA)
Sivut272-276
Sivumäärä5
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInterspeech - Kos Island, Kreikka
Kesto: 1 syysk. 20245 syysk. 2024

Julkaisusarja

NimiProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
KustantajaInternational Speech Communication Association (ISCA)
ISSN (painettu)2308-457X

Conference

ConferenceInterspeech
Maa/AlueKreikka
KaupunkiKos Island
Ajanjakso01/09/202405/09/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Beam-search SIEVE for low-memory speech recognition'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä