Bayesian multiscale smoothing for making inferences about features in scatter plots

Panu Erästö, Lasse Holmström

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

A rather common problem of data analysis is to find interesting features, such as local minima, maxima, and trends in a scatterplot. Variance in the data can then be a problem and inferences about features must be made at some selected level of significance. The recently introduced SiZer technique uses a family of nonparametric smooths of the data to uncover features in a whole range of scales. To aid the analysis, a color map is generated that visualizes the inferences made about the significance of the features. The purpose of this article is to present Bayesian versions of SiZer methodology. Both an analytically solvable regression model and a fully Bayesian approach that uses Gibbs sampling are presented. The prior distributions of the smooths are based on a roughness penalty. Simulation based algorithms are proposed for making simultaneous inferences about the features in the data.
AlkuperäiskieliEnglanti
Sivut569-589
JulkaisuJournal of Computational and Graphical Statistics
Vuosikerta14
Numero3
DOI - pysyväislinkit
TilaJulkaistu - 2005
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian multiscale smoothing for making inferences about features in scatter plots'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä