Bayesian Multiple Hypothesis Testing for Distributed Detection in Sensor Networks

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

In this paper we present a method for multiple hypothesis testing in sensor networks. Standard multiple testing methods ignore spatial dependencies between sensors, and thus suffer from a drastic loss of detection sensitivity. We introduce a Bayesian approach for taking the underlying spatial structure into account. By assigning a Gaus-sian process prior to a latent variable over the field, we locate areas where most of the received test statistics are caused by true signals. In these regions we relax the significance threshold in a manner which improves detection sensitivity while controlling overall false discovery rate at a tolerated level. The proposed method requires only minimal assumptions, but allows the user to incorporate their possible prior knowledge in to the model to refine inference. The benefits of the proposed method are demonstrated in simulation by comparing to standard multiple testing methods.

AlkuperäiskieliEnglanti
Otsikko2019 IEEE Data Science Workshop, DSW 2019 - Proceedings
KustantajaIEEE
Sivut105-109
Sivumäärä5
ISBN (elektroninen)9781728107080
DOI - pysyväislinkit
TilaJulkaistu - 1 kesäk. 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Data Science Workshop - Minneapolis, Yhdysvallat
Kesto: 2 kesäk. 20195 kesäk. 2019

Workshop

WorkshopIEEE Data Science Workshop
LyhennettäDSW
Maa/AlueYhdysvallat
KaupunkiMinneapolis
Ajanjakso02/06/201905/06/2019

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian Multiple Hypothesis Testing for Distributed Detection in Sensor Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä