Bayesian multiple change-point detection of propagating events

Topi Halme, Eyal Nitzan, Visa Koivunen

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

3 Sitaatiot (Scopus)

Abstrakti

Detection of multiple spatial events in parallel is of wide interest in many modern applications, such as Internet of Things, environmental monitoring, and wireless communication. Sensor networks can be used for acquiring data and performing inference. In this paper, we take a Bayesian approach and model the detection of spatial events as a Bayesian multiple change point detection problem. The sensor network is assumed to be divided into distinct known clusters. In each cluster, a point source generates a spatial event that propagates omnidirectionally. The event causes a change in the local environment, which changes the distribution of observations at sensors located within the realm of this event. We propose a method for performing sequential multiple change-point detection under the Bayesian paradigm. It is shown analytically that the proposed procedure controls the false discovery rate (FDR), which is an appropriate criterion for statistically controlling the prevalence of false alarms in a setting where multiple decisions are made in parallel. It is numerically shown that exploiting spatial information decreases the average detection delay compared to procedures that do not properly use this information.

AlkuperäiskieliEnglanti
Otsikko2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
KustantajaIEEE
Sivut4515-4519
Sivumäärä5
Vuosikerta2021-June
ISBN (elektroninen)978-1-7281-7605-5
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Virtua, Online, Toronto, Kanada
Kesto: 6 kesäk. 202111 kesäk. 2021

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueKanada
KaupunkiToronto
Ajanjakso06/06/202111/06/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian multiple change-point detection of propagating events'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä