Bayesian multi-dipole modelling in the frequency domain

Gianvittorio Luria, Dunja Duran, Elisa Visani, Sara Sommariva, Fabio Rotondi, Davide Rossi Sebastiano, Ferruccio Panzica, Michele Piana, Alberto Sorrentino*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

8 Sitaatiot (Scopus)
83 Lataukset (Pure)

Abstrakti

Background: Magneto- and Electro-encephalography record the electromagnetic field generated by neural currents with high temporal frequency and good spatial resolution, and are therefore well suited for source localization in the time and in the frequency domain. In particular, localization of the generators of neural oscillations is very important in the study of cognitive processes in the healthy and in the pathological brain. New method: We introduce the use of a Bayesian multi-dipole localization method in the frequency domain. Given the Fourier Transform of the data at one or multiple frequencies and/or trials, the algorithm approximates numerically the posterior distribution with Monte Carlo techniques. Results: We use synthetic data to show that the proposed method behaves well under a wide range of experimental conditions, including low signal-to-noise ratios and correlated sources. We use dipole clusters to mimic the effect of extended sources. In addition, we test the algorithm on real MEG data to confirm its feasibility. Comparison with existing method(s): Throughout the whole study, DICS (Dynamic Imaging of Coherent Sources) is used systematically as a benchmark. The two methods provide similar general pictures; the posterior distributions of the Bayesian approach contain much richer information at the price of a higher computational cost. Conclusions: The Bayesian method described in this paper represents a reliable approach for localization of multiple dipoles in the frequency domain.

AlkuperäiskieliEnglanti
Sivut27-36
Sivumäärä10
JulkaisuJournal of Neuroscience Methods
Vuosikerta312
DOI - pysyväislinkit
TilaJulkaistu - 15 tammik. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian multi-dipole modelling in the frequency domain'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä