Bayesian metabolic flux analysis reveals intracellular flux couplings

Markus Heinonen*, Maria Osmala, Henrik Mannerström, Janne Wallenius, Samuel Kaski, Juho Rousu, Harri Lähdesmäki

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

17 Sitaatiot (Scopus)
187 Lataukset (Pure)

Abstrakti

Motivation: Metabolic flux balance analysis (FBA) is a standard tool in analyzing metabolic reaction rates compatible with measurements, steady-state and the metabolic reaction network stoichiometry. Flux analysis methods commonly place model assumptions on fluxes due to the convenience of formulating the problem as a linear programing model, while many methods do not consider the inherent uncertainty in flux estimates. Results: We introduce a novel paradigm of Bayesian metabolic flux analysis that models the reactions of the whole genome-scale cellular system in probabilistic terms, and can infer the full flux vector distribution of genome-scale metabolic systems based on exchange and intracellular (e.g. 13C) flux measurements, steady-state assumptions, and objective function assumptions. The Bayesian model couples all fluxes jointly together in a simple truncated multivariate posterior distribution, which reveals informative flux couplings. Our model is a plug-in replacement to conventional metabolic balance methods, such as FBA. Our experiments indicate that we can characterize the genome-scale flux covariances, reveal flux couplings, and determine more intracellular unobserved fluxes in Clostridium acetobutylicum from 13C data than flux variability analysis.

AlkuperäiskieliEnglanti
Artikkelibtz315
Sivuti548-i557
JulkaisuBioinformatics
Vuosikerta35
Numero14
DOI - pysyväislinkit
TilaJulkaistu - 15 heinäk. 2019
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian metabolic flux analysis reveals intracellular flux couplings'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä