Bayesian Inference for Stochastic Multipath Radio Channel Models

Christian Hirsch, Ayush Bharti, Troels Pedersen, Rasmus Waagepetersen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

8 Lataukset (Pure)


Stochastic radio channel models based on underlying point processes of multipath components have been studied intensively since the seminal papers of Turin and Saleh-Valenzuela. Despite of this, inference regarding parameters of these models has remained a major challenge. Current methods typically have a somewhat ad hoc flavor involving a multitude of steps requiring user specification of tuning parameters. In this paper, we propose to instead adopt the principled framework of Bayesian inference to conduct inference for the Saleh-Valenzuela model. The posterior distribution is not analytically tractable and we therefore compute approximations of the posterior using Markov chain Monte Carlo (MCMC) methods specific to point processes. To demonstrate the flexibility of our approach, we additionally propose a new multipath model and apply our inference method to it. The resulting inference methodology is computationally demanding and our successful implementation relies critically on our novel multipath component updates within the MCMC sampler. We demonstrate the usefulness of our approach on simulated and real radio channel data.

JulkaisuIEEE Transactions on Antennas and Propagation
Varhainen verkossa julkaisun päivämäärä2023
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


Sukella tutkimusaiheisiin 'Bayesian Inference for Stochastic Multipath Radio Channel Models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä