Bayesian analysis of features in a scatter plot with dependent observations and errors in predictors

Panu Erästö, Lasse Holmström

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

This article is concerned with finding trends, maxima, and minima in a curve underlying a scatter plot of observations. When the data exhibit large variation, the detection of such features can be difficult because it is not easy to say which of the seeming features are statistically significant. Additional difficulties emerge when the values of the predictor variable may contain errors and when errors in the response variable cause dependence in their observed values. We propose a Bayesian approach for finding statistically significant features in a scatter plot under such challenging conditions. The method extends in several ways the BSiZer approach earlier introduced by the authors.
AlkuperäiskieliEnglanti
Sivut421-431
JulkaisuJOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
Vuosikerta77
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 2007
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian analysis of features in a scatter plot with dependent observations and errors in predictors'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä