Abstrakti
A Bayesian solution is suggested for the modelling of spatial point patterns with inhomogeneous hard-core radius using Gaussian processes in the regularization. The key observation is that a straightforward use of the finite Gibbs hard-core process likelihood together with a log-Gaussian random field prior does not work without penalisation towards high local packing density. Instead, a nearest neighbour Gibbs process likelihood is used. This approach to hard-core inhomogeneity is an alternative to the transformation inhomogeneous hard-core modelling. The computations are based on recent Markovian approximation results for Gaussian fields. As an application, data on the nest locations of Sand Martin (Riparia riparia) colony(1) on a vertical sand bank are analysed. (C) 2012 Elsevier B.V. All rights reserved.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 530-541 |
Sivumäärä | 12 |
Julkaisu | Computational Statistics and Data Analysis |
Vuosikerta | 71 |
DOI - pysyväislinkit | |
Tila | Julkaistu - maalisk. 2014 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |