Abstrakti

In many settings, such as scientific inference, optimization, and transfer learning, the learner has a well-defined objective, which can be treated as estimation of a target parameter, and no intrinsic interest in characterizing the entire data-generating process. Usually, the learner must also contend with additional sources of uncertainty or variables — with nuisance parameters. Bayesian active learning, or sequential optimal experimental design, can straightforwardly accommodate the presence of nuisance parameters, and so is a natural active learning framework for such problems. However, the introduction of nuisance parameters can lead to bias in the Bayesian learner’s estimate of the target parameters, a phenomenon we refer to as negative interference. We characterize the threat of negative interference and how it fundamentally changes the nature of the Bayesian active learner’s task. We show that the extent of negative interference can be extremely large, and that accurate estimation of the nuisance parameters is critical to reducing it. The Bayesian active learner is confronted with a dilemma: whether to spend a finite acquisition budget in pursuit of estimation of the target or of the nuisance parameters. Our setting encompasses Bayesian transfer learning as a special case, and our results shed light on the phenomenon of negative transfer between learning environments.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence
KustantajaJMLR
Sivut3245-3263
Vuosikerta244
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Barcelona, Espanja
Kesto: 15 heinäk. 202419 heinäk. 2024
Konferenssinumero: 40

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaJMLR
Vuosikerta244
ISSN (elektroninen)2640-3498

Conference

ConferenceConference on Uncertainty in Artificial Intelligence
LyhennettäUAI
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso15/07/202419/07/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Bayesian Active Learning in the Presence of Nuisance Parameters'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä