Abstrakti

Drug-induced liver injury (DILI) presents a multifaceted challenge, influenced by interconnected biological mechanisms. Current DILI datasets are characterized by small sizes and high imbalance, posing difficulties in learning robust representations and accurate modeling. To address these challenges, we trained a multi-modal multi-task model integrating preclinical histopathologies, biochemistry (blood markers), and clinical DILI-related adverse drug reactions (ADRs). Leveraging pretrained BERT models, we extracted representations covering a broad chemical space, facilitating robust learning in both frozen and fine-tuned settings. To address imbalanced data, we explored weighted Binary Cross-Entropy (w-BCE) and weighted Focal Loss (w-FL) . Our results demonstrate that the frozen BERT model consistently enhances performance across all metrics and modalities with weighted loss functions compared to their non-weighted counterparts. However, the efficacy of fine-tuning BERT varies across modalities, yielding inconclusive results. In summary, the incorporation of BERT features with weighted loss functions demonstrates advantages, while the efficacy of fine-tuning remains uncertain.

AlkuperäiskieliEnglanti
OtsikkoAI in Drug Discovery - 1st International Workshop, AIDD 2024, Held in Conjunction with ICANN 2024, Proceedings
ToimittajatDjork-Arné Clevert, Michael Wand, Jürgen Schmidhuber, Kristína Malinovská, Igor V. Tetko
KustantajaSpringer
Sivut82-97
Sivumäärä16
ISBN (elektroninen)978-3-031-72381-0
ISBN (painettu)978-3-031-72380-3
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Workshop on AI in Drug Discovery - Lugano, Sveitsi
Kesto: 19 syysk. 202419 syysk. 2024
Konferenssinumero: 1

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta14894 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Workshop

WorkshopInternational Workshop on AI in Drug Discovery
LyhennettäAIDD
Maa/AlueSveitsi
KaupunkiLugano
Ajanjakso19/09/202419/09/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Balancing Imbalanced Toxicity Models : Using MolBERT with Focal Loss'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä