Projekteja vuodessa
Abstrakti
Drug-induced liver injury (DILI) presents a multifaceted challenge, influenced by interconnected biological mechanisms. Current DILI datasets are characterized by small sizes and high imbalance, posing difficulties in learning robust representations and accurate modeling. To address these challenges, we trained a multi-modal multi-task model integrating preclinical histopathologies, biochemistry (blood markers), and clinical DILI-related adverse drug reactions (ADRs). Leveraging pretrained BERT models, we extracted representations covering a broad chemical space, facilitating robust learning in both frozen and fine-tuned settings. To address imbalanced data, we explored weighted Binary Cross-Entropy (w-BCE) and weighted Focal Loss (w-FL) . Our results demonstrate that the frozen BERT model consistently enhances performance across all metrics and modalities with weighted loss functions compared to their non-weighted counterparts. However, the efficacy of fine-tuning BERT varies across modalities, yielding inconclusive results. In summary, the incorporation of BERT features with weighted loss functions demonstrates advantages, while the efficacy of fine-tuning remains uncertain.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | AI in Drug Discovery - 1st International Workshop, AIDD 2024, Held in Conjunction with ICANN 2024, Proceedings |
Toimittajat | Djork-Arné Clevert, Michael Wand, Jürgen Schmidhuber, Kristína Malinovská, Igor V. Tetko |
Kustantaja | Springer |
Sivut | 82-97 |
Sivumäärä | 16 |
ISBN (elektroninen) | 978-3-031-72381-0 |
ISBN (painettu) | 978-3-031-72380-3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2025 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Workshop on AI in Drug Discovery - Lugano, Sveitsi Kesto: 19 syysk. 2024 → 19 syysk. 2024 Konferenssinumero: 1 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Kustantaja | Springer |
Vuosikerta | 14894 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Workshop
Workshop | International Workshop on AI in Drug Discovery |
---|---|
Lyhennettä | AIDD |
Maa/Alue | Sveitsi |
Kaupunki | Lugano |
Ajanjakso | 19/09/2024 → 19/09/2024 |
Sormenjälki
Sukella tutkimusaiheisiin 'Balancing Imbalanced Toxicity Models : Using MolBERT with Focal Loss'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
MSCA AIDD /Kaski S.: Advanced machine learning for Innovative Drug Discovery
Kaski, S. (Vastuullinen tutkija), Masood, A. (Projektin jäsen) & Nahal, Y. (Projektin jäsen)
01/01/2021 → 31/12/2024
Projekti: EU: MC