Autonomous Room Acoustic Measurements using Rapidly-Exploring Random Trees and Gaussian Processes

Georg Götz, Ishwarya Ananthabhotla, Sebastià V. Amengual Garí, Paul T. Calamia

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaKonferenssiesitysScientificvertaisarvioitu

60 Lataukset (Pure)


Various robot systems have been proposed in the past to automate the tedious and time-consuming room acoustic measurement process. While small-scale measurements within a limited area can be realized with robotic arms, room-scale measurements require robots that can travel larger distances and ideally navigate through their environment autonomously. In this paper, we propose a new measurement strategy for large-scale, autonomous, room-acoustic measurement robots. The measurement strategy uses rapidly-exploring random trees to determine multiple candidate paths, from which it chooses the best path for exploring the unvisited parts of the environment and reconstructing a target acoustic metric. Gaussian process regression is used to incrementally merge new acoustic data into a global estimate. We evaluate the measurement strategy in a multi-room scenario, utilizing a late reverberation metric and a robot system consisting of a source and a receiver robot. We demonstrate that the measurement strategy can be used to map and reconstruct late reverberation characteristics over a large area.
TilaHyväksytty/In press - 2023
OKM-julkaisutyyppiEi oikeutettu
TapahtumaForum Acusticum - Torino, Italy, Torino, Italia
Kesto: 10 syysk. 202315 syysk. 2023


ConferenceForum Acusticum


Sukella tutkimusaiheisiin 'Autonomous Room Acoustic Measurements using Rapidly-Exploring Random Trees and Gaussian Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä