Automating three-dimensional osteoarthritis histopathological grading of human osteochondral tissue using machine learning on contrast-enhanced micro-computed tomography

S. J.O. Rytky*, Aleksei Tiulpin, T. Frondelius, M. A.J. Finnilä, S. S. Karhula, Janina Leino, K. P.H. Pritzker, M. Valkealahti, P. Lehenkari, Antti Joukainen, H. Kröger, H. J. Nieminen, S. Saarakkala

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

11 Sitaatiot (Scopus)
205 Lataukset (Pure)

Abstrakti

Objective: To develop and validate a machine learning (ML) approach for automatic three-dimensional (3D) histopathological grading of osteochondral samples imaged with contrast-enhanced micro-computed tomography (CEμCT). Design: A total of 79 osteochondral cores from 24 total knee arthroplasty patients and two asymptomatic donors were imaged using CEμCT with phosphotungstic acid -staining. Volumes-of-interest (VOI) in surface (SZ), deep (DZ) and calcified (CZ) zones were extracted depth-wise and subjected to dimensionally reduced Local Binary Pattern -textural feature analysis. Regularized linear and logistic regression (LR) models were trained zone-wise against the manually assessed semi-quantitative histopathological CEμCT grades (diameter = 2 mm samples). Models were validated using nested leave-one-out cross-validation and an independent test set (4 mm samples). The performance was primarily assessed using Mean Squared Error (MSE) and Average Precision (AP, confidence intervals are given in square brackets). Results: Highest performance on cross-validation was observed for SZ, both on linear regression (MSE = 0.49, 0.69 and 0.71 for SZ, DZ and CZ, respectively) and LR (AP = 0.9 [0.77–0.99], 0.46 [0.28–0.67] and 0.65 [0.41–0.85] for SZ, DZ and CZ, respectively). The test set evaluations yielded increased MSE on all zones. For LR, the performance was also best for the SZ (AP = 0.85 [0.73–0.93], 0.82 [0.70–0.92] and 0.8 [0.67–0.9], for SZ, DZ and CZ, respectively). Conclusion: We present the first ML-based automatic 3D histopathological osteoarthritis (OA) grading method which also adequately perform on grading unseen data, especially in SZ. After further development, the method could potentially be applied by OA researchers since the grading software and all source codes are publicly available.

AlkuperäiskieliEnglanti
Sivut1133-1144
Sivumäärä12
JulkaisuOsteoarthritis and Cartilage
Vuosikerta28
Numero8
Varhainen verkossa julkaisun päivämäärä1 tammik. 2020
DOI - pysyväislinkit
TilaJulkaistu - elok. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Automating three-dimensional osteoarthritis histopathological grading of human osteochondral tissue using machine learning on contrast-enhanced micro-computed tomography'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä