Automating Generative Deep Learning for Artistic Purposes: Challenges and Opportunities

Sebastian Berns*, Terence Broad, Christian Guckelsberger, Simon Colton

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

35 Lataukset (Pure)

Abstrakti

We present a framework for automating generative deep learning with a specific focus on artistic applications. The framework provides opportunities to hand over creative responsibilities to a generative system as targets for automation. For the definition of targets, we adopt core concepts from automated machine learning and an analysis of generative deep learning pipelines, both in standard and artistic settings. To motivate the framework, we argue that automation aligns well with the goal of increasing the creative responsibility of a generative system, a central theme in computational creativity research. We understand automation as the challenge of granting a generative system more creative autonomy, by framing the interaction between the user and the system as a co-creative process. The development of the framework is informed by our analysis of the relationship between automation and creative autonomy. An illustrative example shows how the framework can give inspiration and guidance in the process of handing over creative responsibility.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 12th International Conference on Computational Creativity (ICCC 2021)
KustantajaAssociation for Computational Creativity
Sivut357-366
ISBN (elektroninen)978-989-54160-3-5
TilaJulkaistu - 1 syysk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Computational Creativity - Mexico City, Meksiko
Kesto: 14 syysk. 202118 syysk. 2021

Conference

ConferenceInternational Conference on Computational Creativity
LyhennettäICCC
Maa/AlueMeksiko
KaupunkiMexico City
Ajanjakso14/09/202118/09/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Automating Generative Deep Learning for Artistic Purposes: Challenges and Opportunities'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä