Automatic Sleep Arousal Detection Using State Distance Analysis in Phase Space

Morteza Zabihi*, Ali Bahrami Rad, Simo Sarkka, Serkan Kiranyaz, Aggelos K. Katsaggelos, Moncef Gabbouj

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

5 Sitaatiot (Scopus)
109 Lataukset (Pure)

Abstrakti

Defective sleep arousal can contribute to significant sleep-related injuries and affect the quality of life. Investigating the arousal process is a challenging task as most of such events may be associated with subtle electrophysiological indications. Thus, developing an accurate model is an essential step toward the diagnosis and assessment of arousals. Here we introduce a novel approach for automatic arousal detection inspired by the states' recurrences in nonlinear dynamics. We first show how the states distance matrices of a complex system can be reconstructed to decrease the effect of false neighbors. Then, we use a convolutional neural network for probing the correlated structures inside the distance matrices with the arousal occurrences. Contrary to earlier studies in the literature, the proposed approach focuses on the dynamic behavior of polysomnography recordings rather than frequency analysis. The proposed approach is evaluated on the training dataset in a 3-fold cross-validation scheme and achieved an average of 19.20% and 78.57% for the area under the precision-recall (AUPRC) and area under the ROC curves, respectively. The overall AUPRC on the unseen test dataset is 19%.

AlkuperäiskieliEnglanti
OtsikkoComputing in Cardiology Conference, CinC 2018
KustantajaIEEE
ISBN (elektroninen)9781728109589
DOI - pysyväislinkit
TilaJulkaistu - 1 syysk. 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaComputing in Cardiology Conference - Maastricht, Alankomaat
Kesto: 23 syysk. 201826 syysk. 2018
Konferenssinumero: 45

Julkaisusarja

NimiComputing in Cardiology
Vuosikerta2018-September
ISSN (painettu)2325-8861
ISSN (elektroninen)2325-887X

Conference

ConferenceComputing in Cardiology Conference
LyhennettäCinC
Maa/AlueAlankomaat
KaupunkiMaastricht
Ajanjakso23/09/201826/09/2018

Sormenjälki

Sukella tutkimusaiheisiin 'Automatic Sleep Arousal Detection Using State Distance Analysis in Phase Space'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä