Automatic Detection of Parkinsonian Speech using Wavelet Scattering Features

Kiran Mittapalle*, Paavo Alku

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

19 Lataukset (Pure)

Abstrakti

In this paper, we study the automatic detection of Parkinson’s disease (PD) from speech using features computed by a two-layer wavelet scattering network, which generates locally stable and translation invariant features at each layer. The scattering features are encoded using Fisher vectors to obtain a single fixed-size feature vector per utterance. Support vector machine and feed-forward neural network classifiers are trained using the utterance-level features to perform the detection task (healthy vs. PD). The results obtained with the PC-GITA database revealed that the proposed approach shows better results in comparison to the state-of-the-art techniques. The best classification accuracy of 87% was achieved with the proposed approach using speech from a text reading task.
AlkuperäiskieliEnglanti
JulkaisuJASA Express Letters
TilaHyväksytty/In press - 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Automatic Detection of Parkinsonian Speech using Wavelet Scattering Features'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä