3 Sitaatiot (Scopus)
21 Lataukset (Pure)

Abstrakti

Atomic force microscopy (AFM) with molecule-functionalized tips has emerged as the primary experimental tech- nique for probing the atomic structure of organic molecules on surfaces. Most experiments have been limited to nearly planar aromatic molecules due to difficulties with interpretation of highly distorted AFM images originat- ing from nonplanar molecules. Here, we develop a deep learning infrastructure that matches a set of AFM images with a unique descriptor characterizing the molecular configuration, allowing us to predict the molecular struc- ture directly. We apply this methodology to resolve several distinct adsorption configurations of 1S-camphor on Cu(111) based on low-temperature AFM measurements. This approach will open the door to applying high-resolution AFM to a large variety of systems, for which routine atomic and chemical structural resolution on the level of individual objects/molecules would be a major breakthrough.
AlkuperäiskieliEnglanti
Artikkelieaay6913
Sivumäärä10
JulkaisuScience Advances
Vuosikerta6
Numero9
DOI - pysyväislinkit
TilaJulkaistu - 26 helmikuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Automated structure discovery in atomic force microscopy'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Laitteet

    OtaNano

    Anna Rissanen (Manager)

    Aalto-yliopisto

    Laitteistot/tilat: Facility

  • Science-IT

    Mikko Hakala (Manager)

    Perustieteiden korkeakoulu

    Laitteistot/tilat: Facility

  • Siteeraa tätä