Abstrakti
In educational settings, automated program repair techniques serve as a feedback mechanism to guide students working on their programming assignments. Recent work has investigated using large language models (LLMs) for program repair. In this area, most of the attention has been focused on using proprietary systems accessible through APIs. However, the limited access and control over these systems remain a block to their adoption and usage in education. The present work studies the repairing capabilities of open large language models. In particular, we focus on a recent family of generative models, which, on top of standard left-to-right program synthesis, can also predict missing spans of code at any position in a program. We experiment with one of these models on four programming datasets and show that we can obtain good repair performance even without additional training.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Artificial Intelligence in Education : 24th International Conference, AIED 2023, Tokyo, Japan, July 3–7, 2023, Proceedings |
Toimittajat | Ning Wang, Genaro Rebolledo-Mendez, Noboru Matsuda, Olga C. Santos, Vania Dimitrova |
Kustantaja | Springer |
Sivut | 798–803 |
ISBN (elektroninen) | 978-3-031-36272-9 |
ISBN (painettu) | 978-3-031-36271-2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Artificial Intelligence in Education - Tokyo, Japani Kesto: 3 heinäk. 2023 → 7 heinäk. 2023 Konferenssinumero: 24 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science |
---|---|
Kustantaja | Springer |
Vuosikerta | 13916 |
ISSN (painettu) | 0302-9743 |
Conference
Conference | International Conference on Artificial Intelligence in Education |
---|---|
Lyhennettä | AIED |
Maa/Alue | Japani |
Kaupunki | Tokyo |
Ajanjakso | 03/07/2023 → 07/07/2023 |