Automated Data Correlation for IoT Anomaly Detection with B5G Networks

Vikramajeet Khatri*, Mehrnoosh Monshizadeh, Sina Hojjatinia, Siwar Kriaa, Petri Mahonen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

7 Lataukset (Pure)

Abstrakti

Smart city monitoring technologies, including IoT devices like sensors and smart cameras, enable real-time anomaly detection by analyzing data from various locations. While video and audio can identify unsafe activities, camera coverage is limited, necessitating audio detectors for out-of-sight incidents. Static methods do not perform well under conditions like low-quality voice due to illness or mood, highlighting the need for a dynamic mechanism to orchestrate data collection, clean background noise, correlate data, and identify public safety incidents. This paper addresses challenges in correlating data from IoT devices at different locations, orchestrating information among various IoT service providers, and ensuring communication between IoT and network domains. The proposed architecture leverages AI to analyze IoT data in real-time for automatic anomaly detection, making it well-suited for AI-enabled Beyond 5G (B5G) networks. Analysis results are sent to operators via orchestrators to pinpoint the location of anomalous IoT devices. This information is also relayed to public safety agencies for appropriate action. Unlike existing systems focused on audio and video data, the proposed architecture can be applied to any IoT data, enhancing monitoring and detection capabilities.

AlkuperäiskieliEnglanti
Otsikko2024 32nd International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2024
ToimittajatDinko Begusic, Josko Radic, Matko Saric
KustantajaIEEE
ISBN (elektroninen)9789532901382
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Software, Telecommunications and Computer Networks - Split, Kroatia
Kesto: 26 syysk. 202428 syysk. 2024

Julkaisusarja

NimiSoftCOM
ISSN (elektroninen)1847-358X

Conference

ConferenceInternational Conference on Software, Telecommunications and Computer Networks
LyhennettäSoftCOM
Maa/AlueKroatia
KaupunkiSplit
Ajanjakso26/09/202428/09/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Automated Data Correlation for IoT Anomaly Detection with B5G Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä