AutoGain: Gain Function Adaptation with Submovement Efficiency Optimization

Byungjoo Lee, Mathieu Nancel, Sunjun Kim, Antti Oulasvirta

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

A well-designed control-to-display gain function can improve pointing performance with indirect pointing devices like trackpads. However, the design of gain functions is challenging and mostly based on trial and error. AutoGain is a novel method to individualize a gain function for indirect pointing devices in contexts where cursor trajectories can be tracked. It gradually improves pointing efficiency by using a novel submovement-level tracking+optimization technique that minimizes aiming error (undershooting/overshooting) for each submovement. We first show that AutoGain can produce, from scratch, gain functions with performance comparable to commercial designs, in less than a half-hour of active use. Second, we demonstrate AutoGain’s applicability to emerging input devices (here, a Leap Motion controller) with no reference gain functions. Third, a one-month longitudinal study of normal computer use with AutoGain showed performance improvements from participants’ default functions.
AlkuperäiskieliEnglanti
OtsikkoCHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
KustantajaACM
Sivumäärä12
ISBN (elektroninen)978-1-4503-6708-0
DOI - pysyväislinkit
TilaHyväksytty/In press - 9 joulukuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaACM SIGCHI Annual Conference on Human Factors in Computing Systems - Honolulu, Yhdysvallat
Kesto: 25 huhtikuuta 202030 huhtikuuta 2020
https://chi2020.acm.org/

Conference

ConferenceACM SIGCHI Annual Conference on Human Factors in Computing Systems
LyhennettäACM CHI
MaaYhdysvallat
KaupunkiHonolulu
Ajanjakso25/04/202030/04/2020
www-osoite

Sormenjälki Sukella tutkimusaiheisiin 'AutoGain: Gain Function Adaptation with Submovement Efficiency Optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    COMPUTED: Computational User Interface Design

    Oulasvirta, A., Kim, S., Dayama, N., Shiripour, M., Todi, K., Liao, Y., Koch, J., Nioche, A., Feit, A., Bruckner, L. & Leiva, L.

    27/03/201531/08/2020

    Projekti: EU: ERC grants

    Siteeraa tätä

    Lee, B., Nancel, M., Kim, S., & Oulasvirta, A. (Hyväksytty/painossa). AutoGain: Gain Function Adaptation with Submovement Efficiency Optimization. teoksessa CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems ACM. https://doi.org/10.1145/3313831.3376244