Abstrakti
Nonlinear state estimation using Bayesian filtering and smoothing is still an active area of research, especially when sparsity-inducing regularization is used. However, even the latest filtering and smoothing methods, such as unscented Kalman filters and smoothers and other sigma-point methods, lack a mechanism to promote sparsity in estimation process. Here, we formulate a sparse nonlinear state estimation problem as a generalized L1-regularized minimization problem. Then, we develop an augmented sigma-point Lagrangian splitting method, which leads to iterated unscented, cubature, and Gauss-Hermite Kalman smoothers for computation in the primal space. The resulting method is demonstrated to outperform conventional methods in numerical experimentals.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings |
Kustantaja | European Association For Signal and Imag Processing |
Sivut | 2090-2094 |
Sivumäärä | 5 |
ISBN (elektroninen) | 9789082797053 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | European Signal Processing Conference - Amsterdam, Alankomaat Kesto: 24 elok. 2020 → 28 elok. 2020 Konferenssinumero: 28 |
Julkaisusarja
Nimi | European Signal Processing Conference |
---|---|
ISSN (painettu) | 2219-5491 |
ISSN (elektroninen) | 2076-1465 |
Conference
Conference | European Signal Processing Conference |
---|---|
Lyhennettä | EUSIPCO |
Maa/Alue | Alankomaat |
Kaupunki | Amsterdam |
Ajanjakso | 24/08/2020 → 28/08/2020 |