Augmented sigma-point lagrangian splitting method for sparse nonlinear state estimation

Rui Gao, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
133 Lataukset (Pure)

Abstrakti

Nonlinear state estimation using Bayesian filtering and smoothing is still an active area of research, especially when sparsity-inducing regularization is used. However, even the latest filtering and smoothing methods, such as unscented Kalman filters and smoothers and other sigma-point methods, lack a mechanism to promote sparsity in estimation process. Here, we formulate a sparse nonlinear state estimation problem as a generalized L1-regularized minimization problem. Then, we develop an augmented sigma-point Lagrangian splitting method, which leads to iterated unscented, cubature, and Gauss-Hermite Kalman smoothers for computation in the primal space. The resulting method is demonstrated to outperform conventional methods in numerical experimentals.

AlkuperäiskieliEnglanti
Otsikko28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
KustantajaEuropean Association For Signal and Imag Processing
Sivut2090-2094
Sivumäärä5
ISBN (elektroninen)9789082797053
DOI - pysyväislinkit
TilaJulkaistu - 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Amsterdam, Alankomaat
Kesto: 24 elok. 202028 elok. 2020
Konferenssinumero: 28

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491
ISSN (elektroninen)2076-1465

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueAlankomaat
KaupunkiAmsterdam
Ajanjakso24/08/202028/08/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Augmented sigma-point lagrangian splitting method for sparse nonlinear state estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä