Augmented Reality based 3D Human Hands Tracking from Monocular True Images Using Convolutional Neural Network

A Saif, Zainal Rasyid Mahayuddin

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaChapterScientificvertaisarvioitu

Abstrakti

Precise modeling of hand tracking from monocular camera calibration parameters using semantic cues is an active area of research for the researchers due to lack of accuracy and computational overheads. In this context, deep learning based framework, i.e. convolutional neural network based human hands tracking in the current camera frame become active research problem. In addition, tracking based on monocular camera needs to be addressed due to updated technology such as Unity3D engine and other related augmented reality plugins. This research aims to track human hands in continuous frame by using the tracked points to draw 3D model of the hands as an overlay. In the proposed methodology, Unity3D environment was used for localizing hand object in augmented reality (AR). Later, convolutional neural network was used to detect hand palm and hand keypoints based on cropped region of interest (ROI). Proposed method achieved accuracy rate of 99.2% where single monocular true images were used for tracking. Experimental validation shows the efficiency of the proposed methodology.
AlkuperäiskieliEnglanti
OtsikkoHandbook of Research on Artificial Intelligence and Knowledge Management in Asia’s Digital Economy
KustantajaIGI Global
Luku8
ISBN (elektroninen)978-1-6684-5850-1
ISBN (painettu)978-1-6684-5849-5
DOI - pysyväislinkit
TilaHyväksytty/In press - 2022
OKM-julkaisutyyppiA3 Kirjan tai muun kokoomateoksen osa

Sormenjälki

Sukella tutkimusaiheisiin 'Augmented Reality based 3D Human Hands Tracking from Monocular True Images Using Convolutional Neural Network'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä