Augmented Environment Representations with Complete Object Models

Krishnananda Prabhu Sivananda, Francesco Verdoja*, Ville Kyrki

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

While 2D occupancy maps commonly used in mobile robotics enable safe navigation in indoor environments, in order for robots to understand and interact with their environment and its inhabitants representing 3D geometry and semantic environment information is required. Semantic information is crucial in effective interpretation of the meanings humans attribute to different parts of a space, while 3D geometry is important for safety and high-level understanding. We propose a pipeline that can generate a multi-layer representation of indoor environments for robotic applications. The proposed representation includes 3D metric-semantic layers, a 2D occupancy layer, and an object instance layer where known objects are replaced with an approximate model obtained through a novel model-matching approach. The metric-semantic layer and the object instance layer are combined to form an augmented representation of the environment. Experiments show that the proposed shape matching method outperforms a state-of-the-art deep learning method when tasked to complete unseen parts of objects in the scene. The pipeline performance translates well from simulation to real world as shown by F1-score analysis, with semantic segmentation accuracy using Mask R-CNN acting as the major bottleneck. Finally, we also demonstrate on a real robotic platform how the multi-layer map can be used to improve navigation safety.

AlkuperäiskieliEnglanti
OtsikkoRO-MAN 2022 - 31st IEEE International Conference on Robot and Human Interactive Communication
AlaotsikkoSocial, Asocial, and Antisocial Robots
KustantajaIEEE
Sivut1123-1130
Sivumäärä8
ISBN (elektroninen)978-1-7281-8859-1
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Robot and Human Interactive Communication - Napoli, Italia
Kesto: 29 elok. 20222 syysk. 2022

Julkaisusarja

NimiIEEE RO-MAN
ISSN (painettu)1944-9445
ISSN (elektroninen)1944-9437

Conference

ConferenceIEEE International Conference on Robot and Human Interactive Communication
LyhennettäRO-MAN
Maa/AlueItalia
KaupunkiNapoli
Ajanjakso29/08/202202/09/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Augmented Environment Representations with Complete Object Models'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä